SACADA Database Code: 72

Topology: utc &

of independent nodes (IN): 1

Transitivity: [1332] Space Group: I4132

Pearson: cl48

Coordination Number (CN): 3

Year: 2017

Data

Name	Pressure, GPa	Density, g/cm³	Gap, eV	Relative energy, eV/atom	Bulk, GPa	Shear, GPa	Vickers, GPa	Refs
utc (SACADA #72)		2.385		1.206	267.2	122.7	16.7	SACADA ¹
utc								doi: 10.1007/s11224-016-0782-1

Elasticity tensor (kBar)1

3590.2341	2212.9944	2212.9944	-0.0000	-0.0000	-0.0000
2212.9944	3590.2341	2212.9944	0.0000	0.0000	-0.0000
2212.9944	2212.9944	3590.2341	0.0000	-0.0000	0.0000
-0.0000	0.0000	-0.0000	1806.4674	-0.0000	-0.0000
-0.0000	0.0000	0.0000	-0.0000	1806.4674	0.0000
-0.0000	-0.0000	0.0000	-0.0000	0.0000	1806.4674

¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes.

DFT calculations

We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025$ Å⁻¹ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å⁻¹ for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt–Reuss–Hill [8] approximation. The Vicker's hardness H $_{\nu}$ has been estimated according to Oganov's model [9].