SACADA Database Code: 96

Topology: mog 🗈

of independent nodes (IN): 2

Transitivity: [2232] Space Group: Cmmm

Pearson: oS6

Coordination Number (CN): 4

Year: 2015

Data

Name	Pressure, GPa	Density, g/cm³	Gap, eV	Relative energy, eV/atom	Bulk, GPa	Shear, GPa	Vickers, GPa	Refs
mog (SACADA #96)		3.282		1.495	-	-	_	SACADA ¹
Ibam					372			doi: 10.1103/PhysRevB.91.214104 ជ

Elasticity tensor (kBar)¹

8330.6475	2040.1849	945.5104	0.0000	-0.0000	-0.0000
2040.1849	7975.8553	535.8580	0.0000	-0.0000	-0.0000
945.5104	535.8580	8887.8517	0.0000	-0.0000	-0.0000
0.0000	0.0000	0.0000	1647.3278	0.0000	-0.0000
-0.0000	-0.0000	-0.0000	0.0000	1924.7877	0.0000
-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-4916.8258

¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes.

DFT calculations

We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025~\text{Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å^{-1} for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt-Reuss-Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].