SACADA Database Code: 71

Topology: sod-a 🛛

of independent nodes (IN): 1
Transitivity: [1332]
Space Group: Im-3m
Pearson: cl48
Coordination Number (CN): 4

Year: 2014

Data

Name	Pressure, GPa	Density, g/cm³	Gap, eV	Relative energy, eV/atom	Bulk, GPa	Shear, GPa	Vickers, GPa	Refs
sod-a (SACADA #71)		1.265		1.368	125.7	6.3	1.1	SACADA ¹
CA12		1.248						doi: 10.1134/s1063776114060090 ជ

Elasticity tensor (kBar)¹

1233.2604	1269.4999	1269.4999	-0.0000	0.0000	0.0000
1269.4999	1233.2604	1269.4999	-0.0000	-0.0000	-0.0000
1269.4999	1269.4999	1233.2604	-0.0000	-0.0000	0.0000
-0.0000	0.0000	-0.0000	303.4526	-0.0000	-0.0000
0.0000	-0.0000	-0.0000	-0.0000	303.4526	0.0000
0.0000	-0.0000	0.0000	-0.0000	0.0000	303.4526

¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes.

DFT calculations

We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025$ Å⁻¹ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å⁻¹ for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt-Reuss-Hill [8] approximation. The Vicker's hardness H_v has been estimated according to Oganov's model [9].