SACADA Database Code: 586

Topology: 4³T162-CA

of independent nodes (IN): 3

Transitivity: [39(11)5] Space Group: C2/m Pearson: mS24

Coordination Number (CN): 4

Year: 2021

Data

Name	Pressure, GPa	Density, g/cm³	Gap, eV	Relative energy, eV/atom	Bulk, GPa	Shear, GPa	Vickers, GPa	Refs
4 ³ T162-CA (SACADA #586)		3.276		0.304	394.1	382.8	67.5	SACADA ¹
4³T162-CA								doi: 10.1038/s41524-021-00491-y

Elasticity tensor (kBar)¹

9465.6373	1741.7570	1102.7287	-0.0000	0.0000	-290.4270
1741.7570	7691.3994	1187.1308	0.0000	0.0000	199.6393
1102.7287	1187.1308	10429.7201	0.0000	-0.0000	-575.0492
-0.0000	0.0000	0.0000	3333.1494	-516.4743	0.0000
0.0000	-0.0000	-0.0000	-516.4743	3524.3437	-0.0000
-290.4270	199.6393	-575.0492	0.0000	-0.0000	4660.3793

¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes.

DFT calculations

We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025~\text{Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å⁻¹ for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt-Reuss-Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].