SACADA Database Code: 446 Topology: 46T38 # of independent nodes (IN): 6 Transitivity: [6(12)(12)6] Space Group: P21 Pearson: mP12 Coordination Number (CN): 4 Year: 2017 ## **Data** | Name | Pressure,
GPa | Density,
g/cm³ | Gap,
eV | Relative energy, eV/atom | Bulk,
GPa | Shear,
GPa | Vickers,
GPa | Refs | |----------------------------------|------------------|-------------------|------------|--------------------------|--------------|---------------|-----------------|-----------------------------| | 4 ⁶ T38 (SACADA #446) | | 3.203 | | 1.022 | 359.5 | 336.2 | 57.6 | SACADA ¹ | | G152 | | | | | | | | doi: 10.1002/cphc.201700151 | ## Elasticity tensor (kBar)1 | 8594.4911 | 1774.3692 | 1386.4819 | 0.0000 | 0.0000 | 14.6105 | |-----------|-----------|-----------|-----------|-----------|-----------| | 1774.3692 | 8075.1844 | 636.9197 | 0.0000 | 0.0000 | -213.5319 | | 1386.4819 | 636.9197 | 8192.8578 | -0.0000 | -0.0000 | -2.0080 | | -0.0000 | 0.0000 | -0.0000 | 3961.7093 | 44.2644 | -0.0000 | | 0.0000 | 0.0000 | -0.0000 | 44.2644 | 3130.1688 | -0.0000 | | 14.6105 | -213.5319 | -2.0080 | -0.0000 | -0.0000 | 2837.6168 | ¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes. ## **DFT calculations** We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025~\text{Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å^{-1} for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt–Reuss–Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].