SACADA Database Code: 414 Topology: 4⁵T56 # of independent nodes (IN): 5 Transitivity: [5(12)(10)5] Space Group: P-1 Pearson: aP10 Coordination Number (CN): 4 Year: 2017 ## **Data** | Name | Pressure,
GPa | Density,
g/cm³ | Gap,
eV | Relative energy, eV/atom | Bulk,
GPa | Shear,
GPa | Vickers,
GPa | Refs | |---------------------|------------------|-------------------|------------|--------------------------|--------------|---------------|-----------------|----------------------------------| | 4⁵T56 (SACADA #414) | | 3.487 | | 0.838 | 416.0 | 473.3 | 89.0 | SACADA ¹ | | G112 | | | | | | | | doi: 10.1002/cphc.201700151
ជ | ## Elasticity tensor (kBar)¹ | 11976.2362 | 404.1043 | 772.6135 | 102.6435 | 156.1183 | -215.9824 | |------------|------------|------------|-----------|-----------|-----------| | 404.1043 | 10124.1015 | 1206.9417 | 350.6411 | -844.3060 | 26.9220 | | 772.6135 | 1206.9417 | 10636.9612 | 6.6903 | 503.8765 | -517.1861 | | 102.6435 | 350.6411 | 6.6903 | 4203.0180 | -362.2158 | 203.7561 | | 156.1183 | -844.3060 | 503.8765 | -362.2158 | 4474.6609 | 301.5630 | | -215.9824 | 26.9220 | -517.1861 | 203.7561 | 301.5630 | 5119.9843 | ¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes. ## **DFT calculations** We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025~\text{Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å^{-1} for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt–Reuss–Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].