SACADA Database Code: 41

Topology: pcb (Allotrope with "sp" atoms)

of independent nodes (IN): 1

Transitivity: [1222] Space Group: Im-3m

Pearson: cl48

Coordination Number (CN): 2, 4 (2:1)

Year: 2012

Data

Name	Pressure, GPa	Density, g/cm³	Gap, eV	Relative energy, eV/atom	Bulk, GPa	Shear, GPa	Vickers, GPa	Refs
pcb (SACADA #41)		.758		1.582	76.7	22.4	3.5	SACADA ¹
supercubane C48								doi: 10.1021/jp3104479

Elasticity tensor (kBar)¹

797.0976	751.8891	751.8891	-0.0000	-0.0000	0.0000
751.8891	797.0976	751.8891	-0.0000	-0.0000	0.0000
751.8891	751.8891	797.0976	0.0000	-0.0000	0.0000
-0.0000	-0.0000	-0.0000	640.7269	0.0000	-0.0000
-0.0000	-0.0000	-0.0000	0.0000	640.7269	-0.0000
0.0000	0.0000	0.0000	-0.0000	-0.0000	640.7269

¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes.

DFT calculations

We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025 \, \text{Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å^{-1} for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt-Reuss-Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].