SACADA Database Code: 371 Topology: 4⁵T50 # of independent nodes (IN): 5 Transitivity: [5(12)72] Space Group: P-1 Pearson: aP10 Coordination Number (CN): 4 Year: 2017 ## **Data** | Name | Pressure,
GPa | Density,
g/cm³ | Gap,
eV | Relative energy, eV/atom | Bulk,
GPa | Shear,
GPa | Vickers,
GPa | Refs | |---------------------|------------------|-------------------|------------|--------------------------|--------------|---------------|-----------------|----------------------------------| | 4⁵T50 (SACADA #371) | | 3.260 | | 0.990 | 373.0 | 374.1 | 67.3 | SACADA ¹ | | G35 | | | | | | | | doi: 10.1002/cphc.201700151
ជ | ## Elasticity tensor (kBar)1 | 8570.1963 | 1335.5139 | 914.1962 | 327.0830 | 199.8969 | 16.8386 | |-----------|-----------|-----------|-----------|-----------|-----------| | 1335.5139 | 8531.9292 | 1289.6847 | 492.7908 | 155.1040 | 141.3237 | | 914.1962 | 1289.6847 | 9410.3609 | 16.2769 | -297.7257 | -14.4539 | | 327.0830 | 492.7908 | 16.2769 | 3695.5367 | -247.2421 | 6.6613 | | 199.8969 | 155.1040 | -297.7257 | -247.2421 | 4082.7750 | 172.0651 | | 16.8386 | 141.3237 | -14.4539 | 6.6613 | 172.0651 | 3346.2782 | ¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes. ## **DFT calculations** We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025~\text{Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å^{-1} for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt–Reuss–Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].