SACADA Database Code: 251

Topology: 3⁵,4T6

of independent nodes (IN): 6

Transitivity: [6752] Space Group: Cmmm

Pearson: oS32

Coordination Number (CN): 3, 4 (7:1)

Year: 2000

Data

Name	Pressure, GPa	Density, g/cm³	Gap, eV	Relative energy, eV/atom	Bulk, GPa	Shear, GPa	Vickers, GPa	Refs
3 ⁵ ,4T6 (SACADA #251)		1.318		0.738	91.0	54.5	6.3	SACADA ¹
graphitic honeycomb								doi: 10.1103/PhysRevB.62.7614 🖪
Zigzag carbon(3,3)					97.0	8.7		doi: 10.1103/PhysRevB.74.214104

Elasticity tensor (kBar)¹

3066.4460	1307.4376	650.7722	-0.0000	0.0000	-0.0000
1307.4376	644.6003	335.9156	0.0000	-0.0000	0.0000
650.7722	335.9156	5885.4930	0.0000	-0.0000	-0.0000
-0.0000	0.0000	0.0000	41.1256	-0.0000	-0.0000
0.0000	-0.0000	-0.0000	-0.0000	788.8938	0.0000
-0.0000	0.0000	-0.0000	-0.0000	0.0000	1700.4234

¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes.

DFT calculations

We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025 \, \text{Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å^{-1} for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt-Reuss-Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].