SACADA Database Code: 2

Topology: dia (Allotrope with "sp" atoms)

of independent nodes (IN): 1

Transitivity: [1111] Space Group: R-3m

Pearson: hR12

Coordination Number (CN): 2, 4 (1:1)

Year: 1984

Data

Name	Pressure, GPa	Density, g/cm³	Gap, eV	Relative energy, eV/atom	Bulk, GPa	Shear, GPa	Vickers, GPa	Refs
dia (SACADA #2)		2.718		1.627	255.4	134.8	16.9	SACADA ¹
poly-ynodiamond								doi: 10.1070/RC1984v053n07ABEH003084
polyyne diamond								doi: 10.1007/bf00749588 a

Elasticity tensor (kBar)¹

4388.8554	706.8012	334.9290	-0.0000	37.6104	0.0000
706.8012	4388.8554	334.9290	-0.0000	-37.6104	0.0000
334.9290	334.9290	14243.9600	-0.0000	-0.0000	0.0000
-0.0000	-0.0000	-0.0000	1841.0271	-0.0000	37.6104
37.6104	-37.6104	-0.0000	-0.0000	366.8643	0.0000
-0.0000	0.0000	0.0000	37.6104	0.0000	366.8642

¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes.

DFT calculations

We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025 \text{ Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å⁻¹ for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt-Reuss-Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].