SACADA Database Code: 193 Topology: 4³T139 # of independent nodes (IN): 3 Transitivity: [3895] Space Group: Pm-3m Pearson: cP96 Coordination Number (CN): 4 Year: 2015 ## **Data** | Name | Pressure,
GPa | Density,
g/cm³ | Gap,
eV | Relative energy, eV/atom | Bulk,
GPa | Shear,
GPa | Vickers,
GPa | Refs | |-----------------------------------|------------------|-------------------|------------|--------------------------|--------------|---------------|-----------------|-------------------------| | 4 ³ T139 (SACADA #193) | | 2.651 | | 1.313 | 265.5 | 231.6 | 36.9 | SACADA ¹ | | | | 2.7 | 1.85 | | 279 | 219 | | doi: 10.1039/c5ta01045d | ## Elasticity tensor (kBar)¹ | 6210.2256 | 877.1421 | 877.1421 | -0.0000 | 0.0000 | 0.0000 | |-----------|-----------|-----------|-----------|-----------|-----------| | 877.1421 | 6210.2256 | 877.1421 | 0.0000 | -0.0000 | 0.0000 | | 877.1421 | 877.1421 | 6210.2256 | -0.0000 | -0.0000 | -0.0000 | | -0.0000 | 0.0000 | -0.0000 | 2108.5261 | 0.0000 | -0.0000 | | 0.0000 | -0.0000 | -0.0000 | 0.0000 | 2108.5261 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | -0.0000 | 0.0000 | 2108.5261 | ¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes. ## **DFT** calculations We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025 \text{ Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å⁻¹ for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt-Reuss-Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].