SACADA Database Code: 121 Topology: sdt a # of independent nodes (IN): 2 Transitivity: [2344] Space Group: Im-3m Pearson: cl60 Coordination Number (CN): 4 Year: 2016 ## **Data** | Name | Pressure,
GPa | Density,
g/cm³ | Gap,
eV | Relative energy, eV/atom | Bulk,
GPa | Shear,
GPa | Vickers,
GPa | Refs | |-------------------|------------------|-------------------|------------|--------------------------|--------------|---------------|-----------------|---| | sdt (SACADA #121) | | 3.269 | | 0.366 | 392.3 | 415.2 | 76.5 | SACADA ¹ | | C60 | 50.1 | 3.34 | 2.26 | | 392 | 427 | 82.8 | doi: 10.1016/j.carbon.2016.04.038
ថា | ## Elasticity tensor (kBar)¹ | 9193.0225 | 1288.0816 | 1288.0816 | 0.0000 | 0.0000 | -0.0000 | |-----------|-----------|-----------|-----------|-----------|-----------| | 1288.0816 | 9193.0225 | 1288.0816 | -0.0000 | -0.0000 | 0.0000 | | 1288.0816 | 1288.0816 | 9193.0225 | 0.0000 | -0.0000 | 0.0000 | | 0.0000 | -0.0000 | 0.0000 | 4292.0751 | -0.0000 | -0.0000 | | 0.0000 | -0.0000 | -0.0000 | -0.0000 | 4292.0751 | 0.0000 | | -0.0000 | -0.0000 | 0.0000 | -0.0000 | -0.0000 | 4292.0751 | ¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes. ## **DFT calculations** We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025~\text{Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å^{-1} for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt-Reuss-Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].