SACADA Database Code: 102 Topology: isq a # of independent nodes (IN): 2 Transitivity: [2331] Space Group: P42/mnm Pearson: tP12 Coordination Number (CN): 4 Year: 2014 ## **Data** | Name | Pressure,
GPa | Density,
g/cm³ | Gap,
eV | Relative energy, eV/atom | Bulk,
GPa | Shear,
GPa | Vickers,
GPa | Refs | |-------------------|------------------|-------------------|------------|--------------------------|--------------|---------------|-----------------|---------------------------------------| | isq (SACADA #102) | | 3.099 | | 0.245 | 372.5 | 374.5 | 67.4 | SACADA ¹ | | P42/mnm | | | 4.55 | | 362.6 | | | doi: 10.1103/PhysRevB.89.184112
ថា | ## Elasticity tensor (kBar)1 | 8072.7883 | 1087.2396 | 1607.4622 | -0.0000 | -0.0000 | 0.0000 | |-----------|-----------|-----------|-----------|-----------|-----------| | 1087.2396 | 8072.7883 | 1607.4622 | -0.0000 | 0.0000 | 0.0000 | | 1607.4622 | 1607.4622 | 8864.2600 | 0.0000 | -0.0000 | -0.0000 | | -0.0000 | -0.0000 | 0.0000 | 4655.3463 | 0.0000 | 0.0000 | | -0.0000 | -0.0000 | -0.0000 | 0.0000 | 3649.4482 | -0.0000 | | 0.0000 | 0.0000 | -0.0000 | 0.0000 | -0.0000 | 3649.4483 | ¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes. ## **DFT** calculations We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025~\text{Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å^{-1} for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt-Reuss-Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].